Plastic mulches are widely used for the production of vegetables. There are numerous studies on the use of plastic mulches for peppers, although relatively few have focused on the microenvironmental and physiological impacts of plastic mulches on bell pepper. The objectives were to determine the effects of plastic film mulches on root zone temperature (RZT), soil water status, incidence of thrips and Tomato spotted wilt (TSW), plant growth, gas exchange, accumulation of mineral nutrients, and fruit yield in bell pepper. The study was conducted in Tifton, GA, in the Fall of 2002 and the Spring of 2003 using eight colored plastic mulches. Plastic mulch color influenced the microenvironmental, physiological, and yield responses of bell pepper plants. Plastic film mulches differed in their soil-warming ability with RZTs in both spring and fall being highest in black mulches and lowest in silver mulches. The percentage of photosynthetically active radiation (PAR) reflected from the mulches was highest in silver mulches and lowest in black mulches. The mean RZT under the plastic mulch decreased with increasing percentages of reflected PAR. The number of thrips per flower and the incidence of TSW in mature plants were not significantly different among plastic mulch treatments. The number of thrips per flower had no relationship with the percentage of reflected PAR or with RZT. Plastic mulch treatments had no significant effect on soil water status. Neither soil water content nor soil water potential had a relationship with RZT. In the fall season, during the first 28 days after transplanting, plant growth attributes were among the highest in silver mulches and the lowest in black mulches. Gas exchange and accumulation of mineral nutrients in the leaves and the fruit were not significantly affected by plastic mulches. Both marketable and total yields were higher on silver mulches and lowest on black mulch in the fall, whereas they were in general higher on silver with a black strip mulch and lowest on white and silver1 mulches in the spring. The reduced plant growth and fruit yields in black mulches during the fall were probably the result of the increased RZTs, and thus higher heat accumulation, that resulted in higher plant heat stress conditions compared with silver and white mulches. Fruit yield decreased with mean seasonal RZTs above 27.5 °C. The optimal range of RZT for bell pepper fruit yield was computed to be 25 to 27.5 °C or less.