Wood-based substrates have been extensively evaluated for greenhouse and nursery crop production, yet these substrates have not been evaluated for propagation. The objective of this study was to evaluate processed whole loblolly pine trees (WPT) (Pinus taeda) as a rooting substrate for stem cutting propagation of a range of ornamental crops. Substrates included processed WPT, pine (Pinus sp.) bark (PB), and each mixed with equal parts (by volume) peatmoss (PM) (WPT:PM and PB:PM, respectively). Substrate physical (air space, container capacity, total porosity, bulk density, and particle size distribution) and chemical [pH and electrical conductivity (EC)] properties were determined for all substrates. Rooting percentage, total root length, total root volume, and total shoot length were evaluated for four species in 2008 and five species in 2009. Substrate air space was similar between PB and WPT in the 2008 experiment, and likewise between PB:PM and WPT:PM. In the 2009 experiment, PB and WPT had similar substrate air space. The addition of PM to PB and WPT resulted in reduced air space and increased container capacity in both experiments. The proportion of fine particles doubled for PB:PM and WPT:PM compared with PB and WPT, respectively. Substrate pH for all substrates ranged from 6.0 to 6.9 at 7 days after sticking (DAS) cuttings and 6.9 to 7.1 at 79 DAS. Substrate EC was below the acceptable range for all substrates except at 7 DAS. Rooting percentage was similar among substrates within each species in both experiments. The addition of PM resulted in significantly greater total root length for PB:PM and WPT:PM compared with PB and WPT, respectively, for five of the eight species. Shoot growth was most vigorous for PB:PM compared with the other substrates for all species. The study demonstrated a range of plant species can be propagated from stem cuttings in whole pine tree substrates alone or combined with PM.