Roots of Descent Polynomials and an Algebraic Inequality on Hook Lengths
Pakawut Jiradilok,
Thomas McConville
Abstract:
By reinterpreting the descent polynomial as a function enumerating standard Young tableaux of a ribbon shape, we use Naruse's hook-length formula to express the descent polynomial as a product of two polynomials: one is a trivial part which is a product of linear factors, and the other comes from the excitation factor of Naruse's formula. We expand the excitation factor positively in a Newton basis which arises naturally from Naruse's formula. Under this expansion, each coefficient is the … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.