2021
DOI: 10.48550/arxiv.2103.11367
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

ROSITA: Refined BERT cOmpreSsion with InTegrAted techniques

Abstract: Pre-trained language models of the BERT family have defined the state-of-the-arts in a wide range of NLP tasks. However, the performance of BERT-based models is mainly driven by the enormous amount of parameters, which hinders their application to resource-limited scenarios. Faced with this problem, recent studies have been attempting to compress BERT into a small-scale model. However, most previous work primarily focuses on a single kind of compression technique, and few attention has been paid to the combina… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?