Object detection in SAR images has always been a topic of great interest in the field of deep learning. Early works commonly focus on improving performance on convolutional neural network frameworks. More recent works continue this path and introduce the attention mechanisms of Transformers for better semantic interpretation. However, these methods fail to treat the Transformer itself as a detection framework and, therefore, lack the development of various details that contribute to the state-of-the-art performance of Transformers. In this work, we first base our work on a fully multi-scale Transformer-based detection framework, DETR (DEtection TRansformer) to utilize its superior detection performance. Secondly, to acquire rotation-related attributes for better representation of SAR objects, an Orientation Enhancement Module (OEM) is proposed to facilitate the enhancement of rotation characteristics. Then, to enable learning of more effective and discriminative representations of foreground objects and background noises, a contrastive-loss-based GRC Loss is proposed to preserve patterns of both categories. Moreover, to not restrict comparisons exclusively to maritime objects, we have also developed an open-source labeled vehicle dataset. Finally, we evaluate both detection performance and generalization ability on two well-known ship datasets and our vehicle dataset. We demonstrated our method’s superior performance and generalization ability on both datasets.