It is shown that vibrated packings of frictional disks self-organize cooperatively onto a rotationaltransport state where the long-time angular velocity ωi of each disk i is nonzero. Steady rotation is mediated by the spontaneous breaking of local reflection symmetry, arising when the cages in which disks are constrained by their neighbors acquire quenched disorder at large packing densities. Experiments and numerical simulation of this unexpected phenomenon show excellent agreement with each other, revealing two rotational phases as a function of excitation intensity, respectively the low-drive (LDR) and the moderate-drive (MDR) regimes. In the LDR, interdisk contacts are persistent and rotation happens due to frictional sliding. In the MDR, disks bounce against each other, still forming a solid phase. In the LDR, simple energy-dissipation arguments are provided, that support the observed dependence of the typical rotational velocity on excitation strength.