Rotation-Invariant Convolution Networks with Hexagon-Based Kernels
Yiping TANG,
Kohei HATANO,
Eiji TAKIMOTO
Abstract:We introduce the Hexagonal Convolutional Neural Network (HCNN), a modified version of CNN that is robust against rotation. HCNN utilizes a hexagonal kernel and a multi-block structure that enjoys more degrees of rotation information sharing than standard convolution layers. Our structure is easy to use and does not affect the original tissue structure of the network. We achieve the complete rotational invariance on the recognition task of simple pattern images and demonstrate better performance on the recognit… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.