Rotational Augmentation Techniques: A New Perspective on Ensemble Learning for Image Classification
Unai Munoz Aseguinolaza,
Basilio Sierra,
Naiara Aginako
Abstract:The popularity of data augmentation techniques in machine learning has increased in recent years, as they enable the creation of new samples from existing datasets. Rotational augmentation, in particular, has shown great promise by revolving images and utilising them as additional data points for training. The research in this study aimed to evaluate the effectiveness of rotational augmentation techniques and different voting systems in improving image classification accuracy. To accomplish this, several image… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.