The dynamics of a physical gel, namely, low-molecular-mass organic gelator methyl-4,6-O-benzylidene-α-D-mannopyranoside (α-manno) in water and toluene, are probed by neutron scattering. Using high gelator concentrations, we were able to determine, on a time scale from a few picoseconds to 1 nanosecond, the number of solvent molecules that are immobilized by the rigid network formed by the gelators. We found that only a few toluene molecules per gelator participate in the network which is formed by hydrogen bonding between the gelators' sugar moieties. In water, however, the interactions leading to the gel formations are weaker, involving dipolar, hydrophobic, or π-π interactions, and hydrogen bonds are formed between the gelators and the surrounding water. Therefore, around 10 to 14 water molecules per gelator are immobilized by the presence of the network. This study shows that neutron scattering can give valuable information about the behavior of solvent confined in a molecular gel.