Colloidal particles move in the carrier liquid under the action of several forces and torques. When the particles carry a dipole moment, electric or magnetic, as in ferrofluids, the rotational and translational motions are coupled because the field on a particle depends on the spatial and directional distribution of the others and the force and torque on it depends on the field. Moreover, there is Brownian, as well as dissipative forces and torques on each particle. Consequently, the numerical solution of the equations of motion requires, besides the techniques of Classical Molecular Dynamics, those of Stochastic Dynamics. The algorithm is explained in some detail and applied on a typical ferrofluid. For different values of the temperature, the possibility of the formation of structures is examined.