We study how dark solitons, i.e., solutions of one-dimensional, single-particle, nonlinear, time-dependent Schrödinger equation, emerge from eigenstates of a linear many-body model of contact-interacting bosons moving on a ring, the Lieb-Liniger model. This long-standing problem has been addressed by various groups, which presented different, seemingly unrelated, procedures to reveal the solitonic waves directly from the many-body model. Here, we propose a unification of these results using a simple ansatz for the many-body eigenstate of the Lieb-Liniger model, which gives us access to systems of hundreds of atoms. In this approach, mean-field solitons emerge in a single-particle density through repeated measurements of particle positions in the ansatz state. The postmeasurement state turns out to be a wave packet of yrast states of the reduced system.