This paper presents a numerical model for investigating the structural dynamics response of a rigid rotor supported on deep-groove ball bearings. The numerical model was used to investigate the influence of race waviness on the dynamic characteristics of a rotor ball bearing system, which is very important from a design viewpoint. The forth-order Runge-Kutta numerical integration technique was applied to determine the time displacement response, Poincarè map, and frequency spectra. The analysis demonstrated that the model can be used as a tool for predicting the nonlinear dynamic behavior of a rotor ball bearing system under different operating conditions. The results of this study may help further understanding of the nonlinear dynamics of a rotor bearing system.