Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Οι υδρογονάνθρακες, όπως το φυσικό αέριο και το πετρέλαιο, αποτελούν τη σημαντικότερη πηγή ενέργειας της εποχής μας. Λόγω των αυξανόμενων αναγκών του σύγχρονου πολιτισμού, η εξαγωγή υδρογονανθράκων συνεχίζεται διαρκώς από όλο και περισσότερα χερσαία και υποθαλάσσια κοιτάσματα. Η μεταφορά τους στα αστικά και βιομηχανικά κέντρα κατανάλωσης γίνεται -μεταξύ άλλων- μέσω αγωγών υδρογονανθράκων, οι οποίοι ανήκουν στα ενεργειακά δίκτυα κοινής ωφέλειας (ΔΚΩ). Οι αγωγοί αυτοί αποτελούν έργα υποδομής μεγάλης κλίμακας και στρατηγικής σημασίας. Η σπουδαιότητά τους γίνεται φανερή από το γεγονός ότι γίνονται συχνά αντικείμενο έντονων αντιπαραθέσεων μεταξύ εταιρειών και κρατών, αλλά και από τις δυσμενέστατες συνέπειες και τις ανυπολόγιστες ζημιές που μπορεί να προκαλέσει μία πιθανή αστοχία τους στην κοινωνία, στην οικονομία και στο περιβάλλον. Οι αγωγοί μεταφοράς υδρογονανθράκων μπορούν να εκτείνονται σε αποστάσεις εκατοντάδων χιλιομέτρων, τόσο χερσαία όσο και υποθαλάσσια, φτάνοντας σε βάθη εκατοντάδων μέτρων υπό εξαιρετικά δυσμενείς και αβέβαιες συνθήκες. Αυτό έχει ως αποτέλεσμα να εκτίθενται σε ένα πολύ μεγάλο εύρος κινδύνων, τόσο φυσικών όσο και ανθρωπογενών. Ένας από τους μεγαλύτερους κινδύνους που καλούνται να αντιμετωπίσουν είναι οι σεισμικοί γεωκίνδυνοι, όπως η ισχυρή εδαφική κίνηση, η διαρρήξεις ρηγμάτων, οι κατολισθήσεις και οι ρευστοποιήσεις εδαφών. Τα παραπάνω φαινόμενα προκαλούν παροδικές και μόνιμες εδαφικές μετακινήσεις, οι οποίες μπορούν να προκαλέσουν μεγάλα προβλήματα σε έναν αγωγό. Για την αντιμετώπιση των σεισμικών γεωκινδύνων έχουν πραγματοποιηθεί τις τελευταίες δεκαετίες πολλές μελέτες σε αναλυτικό, υπολογιστικό και πειραματικό επίπεδο. Από αυτές έχουν προκύψει διεθνή κι εθνικά πρότυπα και κανονισμοί για τον αντισεισμικό σχεδιασμό αγωγών. Επίσης, έχουν διαμορφωθεί μεθοδολογίες για την προσομοίωση της συμπεριφοράς τους, καθώς και μία σειρά μέτρων προστασίας για την αποφυγή της αστοχίας τους. Εντούτοις, όλα τα παραπάνω επικεντρώνονται κυρίως στην περίπτωση χερσαίων αγωγών, αφήνοντας πολλά περιθώρια διερεύνησης της απόκρισης και της σεισμικής τρωτότητας των αγωγών στα υποθαλάσσια όσο και στα παράκτια τμήματα τους. Η παρούσα Διδακτορική Διατριβή επικεντρώνεται στη μελέτη υποθαλάσσιων και παράκτιων μεταλλικών αγωγών υδρογονανθράκων, συμβάλλοντας στην ενδελεχή διερεύνηση της συμπεριφοράς τους υπό σεισμική κινηματική καταπόνηση και στην ανάπτυξη προτάσεων για τον καλύτερο δυνατό αντισεισμικό σχεδιασμό τους. Ο στόχος αυτός επιτυγχάνεται μέσω της ανάπτυξης προηγμένων αναλυτικών αλλά και αριθμητικών μεθοδολογιών, χρησιμοποιώντας κλασσικές θεωρίες της μηχανικής, διάφορες αναλυτικές σχέσεις, τις μεθόδους πεπερασμένων στοιχείων και πεπερασμένων διαφορών, κ.α. Στις προσομοιώσεις γίνεται χρήση ρεαλιστικών δεδομένων και παραδοχών που έχουν προκύψει από πειραματικές μελέτες, δεδομένα πεδίου και αναλυτικές μεθοδολογίες. Τα αποτελέσματα από τα παραπάνω προσομοιώματα συγκρίνονται με πειραματικά και αριθμητικά αποτελέσματα άλλων ερευνητών για την εξασφάλιση της επίτευξης ρεαλιστικών και αξιόπιστων αποτελεσμάτων. Για την πρακτική εφαρμοσιμότητα των μεθοδολογιών, χρησιμοποιούνται ρεαλιστικά τοπογραφικά, γεωλογικά και γεωτεχνικά δεδομένα από την περιοχή της ανατολικής Μεσογείου, καθώς επίσης και δεδομένα από τον υπό κατασκευή Αδριατικό Αγωγό φυσικού αερίου (Trans Adriatic Pipeline -TAP). Το κρίσιμο ζήτημα της αλληλεπίδρασης εδάφους-αγωγού προσομοιώνεται με βάση τις μεθοδολογίες που προτείνονται σε πρόσφατους κανονισμούς. Συνοψίζοντας, πρώτος στόχος της Διδακτορικής Διατριβής είναι η μελέτη υποθαλάσσιων αγωγών υπό κινηματική καταπόνηση λόγω κατολίσθησης για διάφορες γωνίες διασταύρωσης της μετακινούμενης μάζας με τον αγωγό. Στη συνέχεια, διερευνάται η διάδοση δευτερογενών ρηγμάτων μέσα από εδαφικές στρώσεις, αλλά και η κινηματική καταπόνηση αγωγών λόγω διασταύρωσης με αυτά τα ρήγματα. Η παρουσία δευτερογενών ρηγμάτων είναι ένα αρκετά συνηθισμένο φαινόμενο που δεν έχει ερευνηθεί μέχρι σήμερα αναφορικά με την επίδραση που μπορεί να έχει σε αγωγούς. Τρίτος στόχος είναι η σύγκριση της αποτελεσματικότητας διαφόρων μέτρων προστασίας που εφαρμόζονται σε υποθαλάσσιους αγωγούς μεγάλου βάθους. Οι αγωγοί αυτοί τοποθετούνται συνήθως απευθείας στην επιφάνεια του πυθμένα, ενώ το εύρος των εφαρμόσιμων μέτρων προστασίας είναι περιορισμένο λόγω του υψηλού κόστους και των τεχνικών δυσκολιών. Τέλος, οι διάφορες μεθοδολογίες που αναπτύχθηκαν εφαρμόζονται μέσω κατάλληλου υπολογιστικού εργαλείου για τη βελτίωση της χάραξης υποθαλάσσιων αγωγών.
Οι υδρογονάνθρακες, όπως το φυσικό αέριο και το πετρέλαιο, αποτελούν τη σημαντικότερη πηγή ενέργειας της εποχής μας. Λόγω των αυξανόμενων αναγκών του σύγχρονου πολιτισμού, η εξαγωγή υδρογονανθράκων συνεχίζεται διαρκώς από όλο και περισσότερα χερσαία και υποθαλάσσια κοιτάσματα. Η μεταφορά τους στα αστικά και βιομηχανικά κέντρα κατανάλωσης γίνεται -μεταξύ άλλων- μέσω αγωγών υδρογονανθράκων, οι οποίοι ανήκουν στα ενεργειακά δίκτυα κοινής ωφέλειας (ΔΚΩ). Οι αγωγοί αυτοί αποτελούν έργα υποδομής μεγάλης κλίμακας και στρατηγικής σημασίας. Η σπουδαιότητά τους γίνεται φανερή από το γεγονός ότι γίνονται συχνά αντικείμενο έντονων αντιπαραθέσεων μεταξύ εταιρειών και κρατών, αλλά και από τις δυσμενέστατες συνέπειες και τις ανυπολόγιστες ζημιές που μπορεί να προκαλέσει μία πιθανή αστοχία τους στην κοινωνία, στην οικονομία και στο περιβάλλον. Οι αγωγοί μεταφοράς υδρογονανθράκων μπορούν να εκτείνονται σε αποστάσεις εκατοντάδων χιλιομέτρων, τόσο χερσαία όσο και υποθαλάσσια, φτάνοντας σε βάθη εκατοντάδων μέτρων υπό εξαιρετικά δυσμενείς και αβέβαιες συνθήκες. Αυτό έχει ως αποτέλεσμα να εκτίθενται σε ένα πολύ μεγάλο εύρος κινδύνων, τόσο φυσικών όσο και ανθρωπογενών. Ένας από τους μεγαλύτερους κινδύνους που καλούνται να αντιμετωπίσουν είναι οι σεισμικοί γεωκίνδυνοι, όπως η ισχυρή εδαφική κίνηση, η διαρρήξεις ρηγμάτων, οι κατολισθήσεις και οι ρευστοποιήσεις εδαφών. Τα παραπάνω φαινόμενα προκαλούν παροδικές και μόνιμες εδαφικές μετακινήσεις, οι οποίες μπορούν να προκαλέσουν μεγάλα προβλήματα σε έναν αγωγό. Για την αντιμετώπιση των σεισμικών γεωκινδύνων έχουν πραγματοποιηθεί τις τελευταίες δεκαετίες πολλές μελέτες σε αναλυτικό, υπολογιστικό και πειραματικό επίπεδο. Από αυτές έχουν προκύψει διεθνή κι εθνικά πρότυπα και κανονισμοί για τον αντισεισμικό σχεδιασμό αγωγών. Επίσης, έχουν διαμορφωθεί μεθοδολογίες για την προσομοίωση της συμπεριφοράς τους, καθώς και μία σειρά μέτρων προστασίας για την αποφυγή της αστοχίας τους. Εντούτοις, όλα τα παραπάνω επικεντρώνονται κυρίως στην περίπτωση χερσαίων αγωγών, αφήνοντας πολλά περιθώρια διερεύνησης της απόκρισης και της σεισμικής τρωτότητας των αγωγών στα υποθαλάσσια όσο και στα παράκτια τμήματα τους. Η παρούσα Διδακτορική Διατριβή επικεντρώνεται στη μελέτη υποθαλάσσιων και παράκτιων μεταλλικών αγωγών υδρογονανθράκων, συμβάλλοντας στην ενδελεχή διερεύνηση της συμπεριφοράς τους υπό σεισμική κινηματική καταπόνηση και στην ανάπτυξη προτάσεων για τον καλύτερο δυνατό αντισεισμικό σχεδιασμό τους. Ο στόχος αυτός επιτυγχάνεται μέσω της ανάπτυξης προηγμένων αναλυτικών αλλά και αριθμητικών μεθοδολογιών, χρησιμοποιώντας κλασσικές θεωρίες της μηχανικής, διάφορες αναλυτικές σχέσεις, τις μεθόδους πεπερασμένων στοιχείων και πεπερασμένων διαφορών, κ.α. Στις προσομοιώσεις γίνεται χρήση ρεαλιστικών δεδομένων και παραδοχών που έχουν προκύψει από πειραματικές μελέτες, δεδομένα πεδίου και αναλυτικές μεθοδολογίες. Τα αποτελέσματα από τα παραπάνω προσομοιώματα συγκρίνονται με πειραματικά και αριθμητικά αποτελέσματα άλλων ερευνητών για την εξασφάλιση της επίτευξης ρεαλιστικών και αξιόπιστων αποτελεσμάτων. Για την πρακτική εφαρμοσιμότητα των μεθοδολογιών, χρησιμοποιούνται ρεαλιστικά τοπογραφικά, γεωλογικά και γεωτεχνικά δεδομένα από την περιοχή της ανατολικής Μεσογείου, καθώς επίσης και δεδομένα από τον υπό κατασκευή Αδριατικό Αγωγό φυσικού αερίου (Trans Adriatic Pipeline -TAP). Το κρίσιμο ζήτημα της αλληλεπίδρασης εδάφους-αγωγού προσομοιώνεται με βάση τις μεθοδολογίες που προτείνονται σε πρόσφατους κανονισμούς. Συνοψίζοντας, πρώτος στόχος της Διδακτορικής Διατριβής είναι η μελέτη υποθαλάσσιων αγωγών υπό κινηματική καταπόνηση λόγω κατολίσθησης για διάφορες γωνίες διασταύρωσης της μετακινούμενης μάζας με τον αγωγό. Στη συνέχεια, διερευνάται η διάδοση δευτερογενών ρηγμάτων μέσα από εδαφικές στρώσεις, αλλά και η κινηματική καταπόνηση αγωγών λόγω διασταύρωσης με αυτά τα ρήγματα. Η παρουσία δευτερογενών ρηγμάτων είναι ένα αρκετά συνηθισμένο φαινόμενο που δεν έχει ερευνηθεί μέχρι σήμερα αναφορικά με την επίδραση που μπορεί να έχει σε αγωγούς. Τρίτος στόχος είναι η σύγκριση της αποτελεσματικότητας διαφόρων μέτρων προστασίας που εφαρμόζονται σε υποθαλάσσιους αγωγούς μεγάλου βάθους. Οι αγωγοί αυτοί τοποθετούνται συνήθως απευθείας στην επιφάνεια του πυθμένα, ενώ το εύρος των εφαρμόσιμων μέτρων προστασίας είναι περιορισμένο λόγω του υψηλού κόστους και των τεχνικών δυσκολιών. Τέλος, οι διάφορες μεθοδολογίες που αναπτύχθηκαν εφαρμόζονται μέσω κατάλληλου υπολογιστικού εργαλείου για τη βελτίωση της χάραξης υποθαλάσσιων αγωγών.
Background: Offshore lifelines (i.e., pipelines and cables) are usually vulnerable to seabed deformations induced by earthquake-triggered geohazards, such as submarine landslides, soil liquefaction, and tectonic faulting. Since the complete avoidance of all areas characterized by offshore geohazards is not always techno-economically feasible, optimal lifeline route selection is deemed necessary for the safety and serviceability of every such infrastructure, in order to minimize the risk of severe environmental and economic consequences. Objective: The current study presents a decision-support tool for the design of offshore high-pressure gas pipelines, capable of performing: (a) the assessment of submarine landslides along a possible pipeline route (i.e., impact force and landslide width), (b) the assessment of their potential impact on the pipeline (i.e., pipeline strains), and (c) the optimal pipeline route selection. Method: The advanced capabilities of GIS in lifeline optimal route selection are successfully combined with efficient (semi-)analytical models that realistically assess the response of offshore pipelines when subjected to axial or oblique loading conditions due to a submarine landslide. Results: The efficiency of the smart tool is presented through a case study of an offshore pipeline that is crossing potentially unstable slopes -under static and seismic conditions- in Adriatic Sea. Five alternative routings are proposed based on the adopted design criteria when crossing the seismically unstable slopes and zones characterized by steep inclination. Conclusions: Provided that sufficient and reliable data are available, the developed decision-support tool can be efficiently used for deriving the potentially optimal route of an offshore pipeline.
Submarine lifelines (pipelines and cables) often cross areas characterized by earthquake-related geohazards (tectonic faulting, landslides and seabed liquefaction). Avoiding geologically hazardous areas increases the length (i.e., cost), whereas a potential crossing may detrimentally affect the structural performance of the infrastructure, requiring more sophisticated design approaches and/or more costly and probably impractical deep sea condition-mitigation measures. Under such adverse conditions, a cost-effective and resilient lifeline route is deemed necessary. The current paper presents a smart decision-support tool for the optimal route selection of submarine cables, assessing whether the proposed routing could effectively cross a (seismically) geologically hazardous area. The GIS-based tool is based on an efficient methodology that combines a least-cost path analysis with a multi-criteria decision method. Accordingly, several routes can be derived for user-defined scenarios, by assigning different weight factors in the adopted design criteria and hazards. When crossing fault zones, the problem of fault-cable intersection is quantitatively assessed in a realistic manner via advanced numerical models. The optimal route can be selected by considering the potential cable distress (i.e., exceedance of allowable cable strains). This tool can be efficiently implemented for deriving the optimal route of energy and telecommunication offshore cables, as it is described in the examined real case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.