The rapid proliferation of low-power wireless devices enables the industrial users to improve the productivity and safety of the plants as well as efficient management of the system. This can be achieved through significant increase in data collection, remote monitoring, and control of the plants and promoting the development of industrial Internet of Things (IoT) applications. However, the industrial environment is typically harsh causing high link quality variations and topology changes. The wireless devices used in this environment are also resource constrained in terms of energy, memory, and processing power. In spite of their low-power and lossy nature, these networks demand provisioning of differentiated services for various industrial applications having diverse quality of service (QoS) requirements. Considering the unique characteristics of low-power and lossy networks (LLN), routing for low-power and lossy networks (RPL) is devised which was standardized by IETF in 2012. To meet the demand of diverse traffic, RPL supports multiple instances in a single network. This paper proposes MI-RPL, a multi-instance solution of RPL for industrial low-power and lossy networks (LLNs). MI-RPL defines four instances for four distinct traffic classes of industrial monitoring applications in terms of delay and reliability. MI-RPL also introduces composite routing metrics and proposes an objective function (OF) to compute the most suitable path for each instance. The performance of MI-RPL is investigated through simulations that exhibit MI-RPL has better delay and packet delivery performance for delay- and reliability-constrained traffic along with lower energy consumption compared to the standard RPL.