“…For benchmarking using the RefPlantNLR dataset we used DRAGO2 (DRAGO2-API, Osuna-Cruz et al ., 2018), NLGenomeSweeper (v1.2.0, Toda et al ., 2020; dependencies: Python 3.8, NCBI-BLAST+ (v2.11.0+), MUSCLE aligner (v3.8.1551), SAMtools (v1.9-50-g18be38a), bedtools (v2.27.1-9-g5f83cacb), HMMER (v3.3.1), InterProScan (v5.47-82.0), TransDecoder (v5.5.0)), NLR-Annotator (Steuernagel et al ., 2020; dependencies: meme-suite (v5.1.1), NLR-Parser (v3;Steuernagel et al ., 2015), Oracle Java SE Development Kit 11.0.9), RGAugury (Li et al ., 2016; dependencies: CViT, HMMER, InterProScan, ncoils, NCBI-BLAST+, Pfamscan, Phobius), and RRGPredictor (Santana Silva and Micheli, 2020; dependencies: InterProScan) using either amino acid, CDS, and/or the extracted NLR genomic loci as an input. Since NLGenomeSweeper and NLR-Annotator only accept nucleotide input, while RGAugury only accepts amino acid input, we only used RefPlantNLR entries for which CDS was available in the direct comparison.…”