RSDNet: A New Multiscale Rail Surface Defect Detection Model
Jingyi Du,
Ruibo Zhang,
Rui Gao
et al.
Abstract:The rapid and accurate identification of rail surface defects is critical to the maintenance and operational safety of the rail. For the problems of large-scale differences in rail surface defects and many small-scale defects, this paper proposes a rail surface defect detection algorithm, RSDNet (Rail Surface Defect Detection Net), with YOLOv8n as the baseline model. Firstly, the CDConv (Cascade Dilated Convolution) module is designed to realize multi-scale convolution by cascading the cavity convolution with … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.