The aim of this study was to solve the frequently occurring rotor-stator rub-impact fault in aero-engines without causing a significant reduction in efficiency. We proposed a fault mitigation scheme, using shape memory alloy (SMA) wire, whereby the tip clearance between the rotor and the stator is adjusted. In this scheme, an acoustic emission (AE) sensor is utilized to monitor the rub-impact fault. An active control actuator is designed with pre-strained two-way SMA wires, driven by an electric current via an Arduino control board, to mitigate the rub-impact fault once it occurs. In order to investigate the feasibility of the proposed scheme, a series of tests on the material properties of NiTi wires, including heating response rate, ultimate strain, free recovery rate, and restoring force, were carried out. A prototype of the actuator was designed, manufactured, and tested under various conditions. The experimental result verifies that the proposed scheme has the potential to mitigate or eliminate the rotor-stator rub-impact fault in aero-engines.