While a multitude of cloud vendors exist today offering flexible application hosting services, the application adaptation capabilities provided in terms of autoscaling are rather limited. In most cases, a static adaptation action is used having a fixed scaling response. In the cases that a dynamic adaptation action is provided, this is based on a single scaling variable. We propose Severity, a novel algorithmic approach aiding the adaptation of cloud applications. Based on the input of the DevOps, our approach detects situations, calculates their Severity and proposes adaptations which can lead to better application performance. Severity can be calculated for any number of application QoS attributes and any type of such attributes, whether bounded or unbounded. Evaluation with four distinct workload types and a variety of monitoring attributes shows that QoS for particular application categories is improved. The feasibility of our approach is demonstrated with a prototype implementation of an application adaptation manager, for which the source code is provided.