“…Many deep learning methods consider interactions between participants: explicitly modeling interacting entities (Alahi et al, 2016; Amirian et al, 2019; Bartoli et al, 2018; Choi et al, 2019; Eiffert and Sukkarieh, 2019; Fernando et al, 2018, 2019; Gupta et al, 2018; Hasan et al, 2018; Huang et al, 2019; Ivanovic and Pavone, 2019; Kosaraju et al, 2019; Pei et al, 2019; Pfeiffer et al, 2018; Radwan et al, 2018; Rhinehart et al, 2019; Sadeghian et al, 2019; Saleh et al, 2019; Shi et al, 2019; Su et al, 2017; van der Heiden et al, 2019; Varshneya and Srinivasaraghavan, 2017; Vemula et al, 2018; Xu et al, 2018; Xue et al, 2018; Zhao et al, 2019), implicitly as a result of pixel-wise prediction (Walker et al, 2014), or by learning a joint motion policy (Lee et al, 2017; Ma et al, 2017; Shalev-Shwartz et al, 2016; Zhan et al, 2018). Many vehicle prediction methods consider interaction between traffic participants (e.g., Agamennoni et al, 2012; Altché and de La Fortelle, 2017; Bahram et al, 2016; Broadhurst et al, 2005; Chai et al, 2019; Cui et al, 2019; Dai et al, 2019; Deo and Trivedi, 2018; Ding et al, 2019; Djuric et al, 2018; Hong et al, 2019; Jain et al, 2019; Käfer et al, 2010; Kim et al, 2017; Kuhnt et al, 2016; Li et al, 2019; Park et al, 2018; Raipuria et a...…”