European funded research into the Recursive Inter-Network Architecture (RINA) started with IRATI, which developed an initial prototype implementation for OS/Linux. IRATI was quickly succeeded by the PRISTINE project, which developed different policies, each tailored to specific use cases. Both projects were development-driven, where most experimentation was limited to unit testing and smaller scale integration testing. In order to assess the viability of RINA as an alternative to current network technologies, larger scale experimental deployments are needed. The opportunity arose for a project that shifted focus from development towards experimentation, leveraging Europe鈥檚 investment in Future Internet Research and Experimentation (FIRE+) infrastructures. The ARCFIRE project took this next step, developing a user-friendly framework for automating RINA experiments. This paper reports and discusses the implications of the experimental results achieved by the ARCFIRE project, using open source RINA implementations deployed on FIRE+ Testbeds. Experiments analyze the properties of RINA relevant to fast network recovery, network renumbering, Quality of Service, distributed mobility management, and network management. Results highlight RINA properties that can greatly simplify the deployment and management of real-world networks; hence, the next steps should be focused on addressing very specific use cases with complete network RINA-based networking solutions that can be transferred to the market.