Flood risk and associated impacts are major societal and policy concerns following widespread flooding in December 2015, which cost the UK economy an estimated £5 billion. Increasing advocacy for alternatives to conventional hard engineering solutions is accompanied by demands for evidence. This study provides a systematic review and meta‐analysis of direct evidence for the effect of tree cover on channel discharge. The results highlighted a deficiency in direct evidence. From 7 eligible studies of 156 papers reviewed, the results show that increasing tree cover has a small statistically significant effect on reducing channel discharge. Meta‐analysis reveals that tree cover reduces channel discharge (standardised mean difference −0.35, 95%CI, −0.71 to 0.00), but the effect was variable (I2 = 81.91%), the potential for confounding was high, and publication bias is strongly suspected (Egger Test z = 3.0568, p = .002). Due to the lack of direct evidence the overall strength of evidence is low, indicating high uncertainty. Further primary research is required to understand reasons for heterogeneity and reduce uncertainty. A Bayesian network parameterised with data from the meta‐analysis supports investment in integrated catchment management, particularly on infrastructure density and water storage (reservoirs), for effective responses to flood risk.