The thermodynamic geometry formalism is applied to strongly interacting matter to estimate the deconfinement temperature. The curved thermodynamic metric for Quantum Chromodynamics (QCD) is evaluated on the basis of lattice data, whereas the hadron resonance gas model is used for the hadronic sector. Since the deconfinement transition is a crossover, the geometric criterion used to define the (pseudo-)critical temperature, as a function of the baryonchemical potential µ B , is R(T, µ B ) = 0, where R is the scalar curvature. The (pseudo-)critical temperature, T c , resulting from QCD thermodynamic geometry is in good agreement with lattice and phenomenological freeze-out temperature estimates. The crossing temperature, T h , evaluated by the hadron resonance gas, which suffers of some model dependence, is larger than T c (about 20%) signaling remnants of confinement above the transition.PACS numbers: