2014
DOI: 10.1039/c4nj00739e
|View full text |Cite
|
Sign up to set email alerts
|

Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

1
14
0
1

Year Published

2015
2015
2020
2020

Publication Types

Select...
7
1
1

Relationship

1
8

Authors

Journals

citations
Cited by 56 publications
(16 citation statements)
references
References 25 publications
(14 reference statements)
1
14
0
1
Order By: Relevance
“…For catalysis of NaBH 4 , the use of finely divided metal catalysts are often emphasized elsewhere, particularly the use of Pd [29][30][31][32], Pt [33][34][35][36] and Ru [37][38][39][40][41]. However, despite their excellent catalytic efficiencies, the use of those metal catalysts is highly cost prohibitive, which makes their usage for fuel-cells applications highly uneconomical.…”
Section: Introductionmentioning
confidence: 99%
“…For catalysis of NaBH 4 , the use of finely divided metal catalysts are often emphasized elsewhere, particularly the use of Pd [29][30][31][32], Pt [33][34][35][36] and Ru [37][38][39][40][41]. However, despite their excellent catalytic efficiencies, the use of those metal catalysts is highly cost prohibitive, which makes their usage for fuel-cells applications highly uneconomical.…”
Section: Introductionmentioning
confidence: 99%
“…Due to the ultrahigh porosity and large surface area [2], together with chemical tunability and structural modifiability [3], the area of MOFs has become one of the fastest growing fields in chemistry [4], such as gas absorption and storage [5,6], energy technologies [7], thin film devices [8], chemical sensors [9], and heterogeneous catalysis [10−12]. The tunable pores of MOFs can be employed to control the growth and hinder the aggregation of metal NPs in confined cavities, that markedly improved the catalytic performance and durability [13]. So far, many different kinds of metal NPs@MOFs catalysts have been studied, such as noble metal Pt@MIL-101 [14], non-noble metal Cu-MOF-74 [15], as well as composites, Rh-Ni@MOF-74(Ni) [16], CuCo@MIL-101 [17] and Pd/CeMIL-101 [18], etc.…”
Section: Introductionmentioning
confidence: 99%
“…Fe 0.1 @BiVO 4 和五次催化循环后的 Ru 1 Fe 0.1 @BiVO 4 的红外光谱 图。 从图中可以看出, 在约 730 cm -1 处出现的 BiVO 4 Fe 0.1 @BiVO 4 对 AB 的水解活性, 这种较强的协同 作用可能是由于 Ru 和 Fe 之间的电子效应引起的 [26] 。 Ru 和 Fe 的电负性分别为 2.2 和 1.83, 其电负性差值 较大, 将产生强的电子效应, 因此, 引入 Fe 对提高 不同催化剂对 AB 水解产氢速率图 Fig. 6 Plots of n(H 2 )/n(AB) vs. time from the hydrolysis of AB (18.5 mg) (A) Catalysts with the same nanoparticles loadings; (B) Ru 1 Fe x NPs; (C) Ru 1 Fe x @BiVO 4 ; (D) Catalysts with different supporters Fe x @BiVO 4 比相应的纯 Ru 1 Fe x NPs 的 产氢速率都高。随着 x 从 0.05 增大到 0.3, 催化反应 速率先增加后降低。这是由于随着 另一个是通过两个 片段 NH 3 BH 2 -和 OH-的还原消除脱氢而形成羟基 中间体 NH 3 BH 2 OH。第三步, 一个 H 2 O 分子进攻金 属表面的中间体 NH 3 BH 2 OH, 产生 1 个分子 H 2 并形 成中间体 NH 3 BH(OH) 2 ; 随后, 另一个 H 2 O 分子通过 相同的机制进攻, 也释放 1 个分子 H 2 并得到中间体 E a 为 43.7 kJmol -1 , 而 且 转 化 频 率(TOF)为 205.4 mol H 2 mol R u min -1 。从表 2 可以看 出, 与其他钌基催化剂相比, 实验制备的催化剂 Ru 1 Fe 0.1 @BiVO 4 对 AB 水解产氢具有较低的 E a 和较 高的 TOF 值, 优势显著, 具有潜在的应用价值。 为了探究催化剂的催化稳定性, 实验测试了催 化剂五次循环性能, 如图 8(C)所示, 催化剂经过五次 循环后活性有所降低, 这可能与水解过程中溶液的 粘度增加或偏硼酸盐浓度增加有关[29]…”
unclassified