In this study, we employ strong field approximation (SFA) to investigate the influence of the number of pulse cycles on above-threshold ionization within the framework of nondipole theory. The SFA enables the analysis of the ionization process under the dominance of the electric field, compared to other factors such as the binding potential of an atom. Nondipole effects, including higher-order multipole fields, can significantly impact ionization dynamics. However, the interaction between nondipole effects and pulse cycles remains unclear. Therefore, we investigate the pulse cycle dependence of ionization and examine peak shifts in Kr and Ar atoms. Our findings have implications for comprehensively understanding the effects of electromagnetic fields on electron behavior. The insights gained from this study provide valuable guidance for future research in strong field ionization.