The transsulfuration pathway converts homocysteine to cysteine and represents the metabolic link between antioxidant and methylation metabolism. The first and committing step in this pathway is catalyzed by cystathionine -synthase (CBS), which is subject to complex regulation, including allosteric activation by the methyl donor, S-adenosylmethionine (AdoMet). In this study, we demonstrate that methionine restriction leads to a >10-fold decrease in CBS protein levels, and pulse proteolysis studies reveal that binding of AdoMet stabilizes the protein against degradation by Ϸ12 kcal͞mol. These observations predict that under pathological conditions where AdoMet levels are diminished, CBS, and therefore glutathione levels, will be reduced. Indeed, we demonstrate this to be the case in a mouse model for spontaneous steatohepatitis in which the gene for the MAT1A isoenzyme encoding AdoMet synthetase has been disrupted, and in human hepatocellular carcinoma, where MAT1A is silenced. Furthermore, diminished CBS levels are associated with reduced cell viability in hepatoma cells challenged with tert-butyl hydroperoxide. This study uncovers a mechanism by which CBS is allosterically activated by AdoMet under normal conditions but is destabilized under pathological conditions, for redirecting the metabolic flux toward methionine conservation. A mechanistic basis for the coordinate changes in redox and methylation metabolism that are a hallmark of several complex diseases is explained by these observations. glutathione ͉ liver disease C ellular methylation and antioxidant metabolism are linked by the transsulfuration pathway, which converts the methionine cycle intermediate, homocysteine, to cysteine, the limiting reagent in glutathione synthesis. The balance between conserving methionine via transmethylation under conditions of methionine restriction and committing it to transsulfuration under conditions of plenty is regulated at two key control points, methionine adenosyltransferase (MAT) and cystathionine -synthase (CBS) (Fig. 1). Aberrations in methylation and redox homeostasis are common to a number of chronic diseases including pathologies of the liver. In alcoholic liver disease and in hepatocellular carcinoma an increase in markers of oxidative stress is observed (1, 2). Furthermore, there is a switch in the expression of MAT genes from MAT1A to MAT2A in liver cancer, which correlates with lower S-adenosylmethionine (AdoMet) levels (3).Under normal conditions, coordinate regulation of methylation and antioxidant metabolism is achieved by the allosteric activation of CBS by AdoMet (Fig. 1). AdoMet is a V-type allosteric effector that increases CBS activity 2-to 3-fold (4, 5). Under conditions of plenty, methionine is directed toward cysteine synthesis via the transsulfuration pathway for use in glutathione and other cellular functions or directed toward catabolism. Cysteine is the limiting reagent in glutathione synthesis and in liver; Ϸ50% of the cysteine in glutathione is derived from methionine via the transsulf...