2024
DOI: 10.24330/ieja.1480269
|View full text |Cite
|
Sign up to set email alerts
|

$S$-$M$-cyclic submodules and some applications

Samruam Baupradist

Abstract: In this paper, we introduce the notion of $S$-$M$-cyclic submodules, which is a generalization of the notion of $M$-cyclic submodules. Let $M, N$ be right $R$-modules and $S$ be a multiplicatively closed subset of a ring $R$. A submodule $A$ of $N$ is said to be an $S$-$M$-cyclic submodule, if there exist $s\in S$ and $f \in Hom_R(M,N)$ such that $As \subseteq f(M) \subseteq A$. Besides giving many properties of $S$-$M$-cyclic submodules, we generalize some results on $M$-cyclic submodules to $S$-$M$-cyclic … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?