In this study, we developed novel BiOBr/WO2.72 nanocomposites (abbreviated as BO/WO) and systematically investigated their photocatalytic degradation performance against the pesticide dichlorvos under visible light irradiation. The experimental results demonstrated that the BO/WO nanocomposites achieved an 85.4% degradation of dichlorvos within 80 min. In comparison, the BO alone achieved a degradation degree of 66.8%, and the WO achieved a degradation degree of 64.7%. Furthermore, the BO/WO nanocomposites retained 96% of their initial activity over five consecutive cycles, demonstrating exceptional stability. Advanced characterization techniques, such as high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) confirmed the composition and catalytic mechanism of the composite material. The findings indicated that the BO/WO nanocomposites, through their optimized Type-I heterojunction structure, achieved efficient separation and transport of photogenerated electron–hole pairs, significantly enhancing the degree of degradation of organophosphate pesticides. This research not only propels the development of high-performance photocatalytic materials, but also provides innovative strategies and a robust scientific foundation for mitigating global organophosphate pesticide pollution, underscoring its substantial potential for environmental remediation.