In this paper, we show the existence of an S-shaped connected component in the set of radial positive solutions of boundary value problem$$\begin{array}{}
\displaystyle \left\{\,\begin{array}{}
-\text{ div}\big(\phi_N(\nabla y)\big)=\lambda a(|x|)f(y)\, \, \, \, \, \text{in}\, \, \mathcal{A},\\\frac{\partial y}{\partial \nu}=0\, \, \, \,\, \text{ on }\, \, {\it\Gamma}_1,\qquad y=0\, \, \, \, \text{ on}\, \, {\it\Gamma}_2,\\
\end{array}
\right.
\end{array} $$where R2 ∈ (0, ∞) and R1 ∈ (0, R2) is a given constant, 𝓐 = {x ∈ ℝN : R1 < ∣x∣ < R2}, Γ1 = {x ∈ ℝN : ∣x∣ = R1}, Γ2 = {x ∈ ℝN : ∣x∣ = R2}, $\begin{array}{}
\phi_N(s)=\frac{s}{\sqrt{1-|s|^2}},
\end{array} $s ∈ ℝN, λ is a positive parameter, a ∈ C[R1, R2], f ∈ C[0, ∞), $\begin{array}{}
\frac{\partial y}{\partial \nu}
\end{array} $ denotes the outward normal derivative of y and ∣⋅∣ denotes the Euclidean norm in ℝN. The proof of main result is based upon bifurcation techniques.