Interaction of RAGE with its ligands can promote tumor progression, invasion and angiogenesis. Although blocking RAGE signaling has been proposed as a potential anti-cancer strategy, functional contributions of RAGE expression in the tumor microenvironment (TME) has not been investigated in detail. Here, we evaluated the effect of genetic depletion of RAGE in TME on the growth of gliomas. In both invasive and non-invasive glioma models, animal survival was prolonged in RAGE knockout (Ager−/−) mice. However, the improvement in survival in Ager−/− mice was not due to changes in tumor growth rate but rather to a reduction in tumor-associated inflammation. Furthermore, RAGE ablation in the TME abrogated angiogenesis by downregulating the expression of pro-angiogenic factors which prevented normal vessel formation, thereby generating a leaky vasculature. These alterations were most prominent in non-invasive gliomas, where the expression of VEGF and pro-inflammatory cytokines were also lower in tumor-associated macrophages (TAM) in Ager−/− mice. Interestingly, reconstitution of Ager−/− TAM with wild-type microglia or macrophages normalized tumor vascularity. Our results establish that RAGE signaling in glioma-associated microglia and TAM drives angiogenesis, underscoring the complex role of RAGE and its ligands in gliomagenesis.