Vertical navigation is crucial for safe aircraft separation and has been traditionally based on the pressure altitude provided by barometric altimeters. New aviation operations require robust determination of geodetic altitude and are expected to primarily rely on a global navigation satellite system (GNSS). Because deviations between pressure and geodetic altitudes can reach hundreds of meters, an altitude harmonization is needed to use barometers in combination with GNSS. In this paper, we first present a methodology to compute an accurate geodetic altitude from barometer and external weather data. Secondly, we derive error and threat models of this geodetic altitude. Finally, we employ these models within a GNSS integrity monitoring algorithm augmented with the derived altitude.We assess our methodologies against flight test measurements and availability simulations of localizer performance with vertical guidance operations. These analyses illustrate the potential benefits of employing barometers as augmentation or stand-alone systems for geodetic altitude navigation.