Purpose
Using the multi-detector computed tomography and related three-dimensional imaging technology, we developed a vertebral needle targeting simulation training system named spinal needling intervention practice using ray-summation imaging (SNIPURS). Herein, we assessed the utility of SNIPURS by evaluating changes in the learning curves of SNIPURS trainees.
Methods
Twenty-one examinees were enrolled: seven experienced operators (expert group), seven trainees with coaching (coaching group), and seven trainees without coaching (non-coaching group). They performed six tests of vertebral needle targeting simulation on the workstation-generated spinal ray-summation images of six patients with vertebral fractures. In each test, they determined the bilateral trans-pedicular puncture points and angles on two thoracic and two lumbar vertebrae on ray-summation imaging (i.e., 8 simulations per test). The coaching group received coaching by a trainer after Tests 1 and 4, while the others did not. Scores were given based on the trans-pedicular pathway (1 point) or not (0 point). Eight virtual needles were evaluated in each of Tests 1–6.
Results
Among the three groups, the expert group had the highest average scores on Tests 1–4 (expert: 3.86, 6.57, 7.43, and 7.57; coaching: 1.86, 6.14, 6, and 6.29; and non-coaching: 1.14, 4.14, 4.71, and 4.86). The coaching group’s scores caught up with the expert groups’ average scores on Tests 5 and 6, whereas those of the non-coaching group did not (expert and coaching: 7.86 and 8.00, non-coaching: 5.86 and 7.14). All examinees in the expert and coaching groups achieved a perfect score on the final Test 6, whereas three of the seven non-coaching trainees did not.
Conclusion
SNIPURS might be suitable for vertebral needle targeting training. The coaching provided during SNIPURS training helped the trainees to acquire the spinal puncture techniques in PVP.