A patient-tailored therapy of the heterogeneous, neuropsychiatric disorder of Parkinson’s disease (PD) aims to improve dopamine sensitive motor symptoms and associated non-motor features. A repeated, individual adaptation of dopamine substituting compounds is required throughout the disease course due to the progress of neurodegeneration. Therapeutic drug monitoring of dopamine substituting drugs may be an essential tool to optimize drug applications. We suggest plasma determination of levodopa as an initial step. The complex pharmacology of levodopa is influenced by its short elimination half-life and the gastric emptying velocity. Both considerably contribute to the observed variability of plasma concentrations of levodopa and its metabolite 3-O-methyldopa. These amino acids compete with other aromatic amino acids as well as branched chain amino acids on the limited transport capacity in the gastrointestinal tract and the blood brain barrier. However, not much is known about plasma concentrations of levodopa and other drugs/drug combinations in PD. Some examples may illustrate this lack of knowledge: Levodopa measurements may allow further insights in the phenomenon of inappropriate levodopa response. They may result from missing compliance, interactions e.g. with treatments for other mainly age-related disorders, like hypertension, diabetes, hyperlipidaemia, rheumatism or by patients themselves independently taken herbal medicines. Indeed, uncontrolled combination of compounds for accompanying disorders as given above with PD drugs might increase the risk of side effects. Determination of other drugs used to treat PD in plasma such as dopamine receptor agonists, amantadine and inhibitors of catechol-O-methyltransferase or monoamine oxidase B may refine and improve the value of calculations of levodopa equivalents. How COMT-Is change levodopa plasma concentrations? How other dopaminergic and non-dopaminergic drugs influence levodopa levels? Also, delivery of drugs as well as single and repeated dosing and continuous levodopa administrations with a possible accumulation of levodopa, pharmacokinetic behaviour of generic and branded compounds appear to have a marked influence on efficacy of drug treatment and side effect profile. Their increase over time may reflect progression of PD to a certain degree. Therapeutic drug monitoring in PD is considered to improve the therapeutic efficacy in the course of this devastating neurologic disorder and therefore is able to contribute to the patients’ precision medicine. State-of-the-art clinical studies are urgently needed to demonstrate the usefulness of TDM for optimizing the treatment of PD.