Despite the increasing sophistication of autonomous vehicles (AVs) and promises of increased safety, accidents will occur. These will corrode public trust and negatively impact user acceptance, adoption and continued use. It is imperative to explore methods that can potentially reduce this impact. The aim of the current paper is to investigate the efficacy of informational assistants (IAs) varying by anthropomorphism (humanoid robot vs. no robot) and dialogue style (conversational vs. informational) on trust in and blame on a highly autonomous vehicle in the event of an accident. The accident scenario involved a pedestrian violating the Highway Code by stepping out in front of a parked bus and the AV not being able to stop in time during an overtake manoeuvre. The humanoid (Nao) robot IA did not improve trust (across three measures) or reduce blame on the AV in Experiment 1, although communicated intentions and actions were perceived by some as being assertive and risky. Reducing assertiveness in Experiment 2 resulted in higher trust (on one measure) in the robot condition, especially with the conversational dialogue style. However, there were again no effects on blame. In Experiment 3, participants had multiple experiences of the AV negotiating parked buses without negative outcomes. Trust significantly increased across each event, although it plummeted following the accident with no differences due to anthropomorphism or dialogue style. The perceived capabilities of the AV and IA before the critical accident event may have had a counterintuitive effect. Overall, evidence was found for a few benefits and many pitfalls of anthropomorphising an AV with a humanoid robot IA in the event of an accident situation.