2015
DOI: 10.1117/1.jbo.20.9.095005
|View full text |Cite
|
Sign up to set email alerts
|

Safety of cornea and iris in ocular surgery with 355-nm lasers

Abstract: Abstract. A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2015
2015
2019
2019

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 21 publications
0
1
0
Order By: Relevance
“…[32][33][34][35][36] Patient safety is likely not a concern when a UV-A wavelength of 355 nm is used for intrastromal cutting because the threshold for photodamage at this wavelength is four orders of magnitude higher than for UV-B wavelengths around 250 nm, and the total energy required for dissection remains well below damage thresholds for photokeratitis. 33,34,37 However, it should be emphasized that the use of laser light at 355 nm is not essential for the feasibility of the method. IR fs pulses at 1040 nm, as commonly used in Femto-LASIK, could also be applied.…”
Section: Methodsmentioning
confidence: 99%
“…[32][33][34][35][36] Patient safety is likely not a concern when a UV-A wavelength of 355 nm is used for intrastromal cutting because the threshold for photodamage at this wavelength is four orders of magnitude higher than for UV-B wavelengths around 250 nm, and the total energy required for dissection remains well below damage thresholds for photokeratitis. 33,34,37 However, it should be emphasized that the use of laser light at 355 nm is not essential for the feasibility of the method. IR fs pulses at 1040 nm, as commonly used in Femto-LASIK, could also be applied.…”
Section: Methodsmentioning
confidence: 99%