Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease that affects individuals of diverse racial and ethnic backgrounds. There is currently no cure for ALS, and the number of efficient disease-modifying drugs for ALS is limited to a few, despite the large number of clinical trials conducted in recent years. The latter could be attributed to the significant heterogeneity of ALS clinical phenotypes even in their familial forms. To address this issue, we conducted postmortem genetic screening of two female patients with sporadic ALS (sALS) and contrasting clinical phenotypes. The results demonstrated that despite their contrasting clinical phenotypes, both patients had rare pathologic/deleterious mutations in five genes: ACSM5, BBS12, HLA-DQB1, MUC20, and OBSCN, with mutations in three of those genes being identical: BBS12, HLA-DQB1, and MUC20. Additional groups of mutated genes linked to ALS, other neurologic disorders, and ALS-related pathologies were also identified. These data are consistent with a hypothesis that an individual could be primed for ALS via mutations in a specific set of genes not directly linked to ALS. The disease could be initiated by a concerted action of several mutated genes linked to ALS and the disease's clinical phenotype will evolve further through accessory gene mutations associated with other neurological disorders and ALS-related pathologies.