2022
DOI: 10.48550/arxiv.2210.09012
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

SAICL: Student Modelling with Interaction-level Auxiliary Contrastive Tasks for Knowledge Tracing and Dropout Prediction

Abstract: Knowledge tracing and dropout prediction are crucial for online education to estimate students' knowledge states or to prevent dropout rates. While traditional systems interacting with students suffered from data sparsity and overfitting, recent sample-level contrastive learning helps to alleviate this issue. One major limitation of sample-level approaches is that they regard students' behavior interaction sequences as a bundle, so they often fail to encode temporal contexts and track their dynamic changes, ma… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?