2015
DOI: 10.1016/j.ijsolstr.2014.10.002
|View full text |Cite
|
Sign up to set email alerts
|

Saint-Venant torsion of orthotropic bars with rectangular cross section weakened by cracks

Abstract: a b s t r a c tThe solution to problem of a Volterra-type screw dislocation in an orthotropic bar with rectangular cross section is first obtained by means of a finite Fourier cosine transform. The bar is under axial torque which is governed by the Saint-Venant torsion theory. The series solution is then derived for displacement and stress fields in the bar cross section. The dislocation solution is employed to derive a set of Cauchy singular integral equations for the analysis of curved cracks. The solution t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2016
2016
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 19 publications
(2 citation statements)
references
References 33 publications
0
2
0
Order By: Relevance
“…Ecsedi [19] presented some closed form solutions for unrestrained torsion of heterogeneous cylindrical bars. Hassani and Faal [20] used a finite Fourier cosine transform method to solve unrestrained torsion problems of orthotropic bars with rectangular cross-section weakened by cracks.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Ecsedi [19] presented some closed form solutions for unrestrained torsion of heterogeneous cylindrical bars. Hassani and Faal [20] used a finite Fourier cosine transform method to solve unrestrained torsion problems of orthotropic bars with rectangular cross-section weakened by cracks.…”
Section: Introductionmentioning
confidence: 99%
“…Agarana and Agboola [22] studied the unrestrained torsional problems of circular bars made of different materials. Several researchers including Romano et al [23], Brice and Picking [24], Hughes et al [25], Ecsedi [19], and Hassani and Faal [20] have used analytical and experimental techniques to study unrestrained torsion of bars.…”
Section: Introductionmentioning
confidence: 99%