Glutathione, the most abundant intracellular antioxidant, protects cells against reactive oxygen species induced oxidative stress and regulates intracellular redox status. We previously demonstrated that yellow Chinese chive (ki-nira) increased the intracellular glutathione levels. Acetaminophen (APAP) is a commonly used analgesic. However, an overdose of APAP causes severe hepatotoxicity via depletion of the hepatic glutathione. In this study, we investigated the hepatoprotective effects of yellow Chinese chive extract (YCE) against APAP-induced hepatotoxicity in mice. YCE (25 or 100 mg/kg) was administered once daily for 7 d, and then APAP (700 mg/kg) was injected at 6 h before the mice were sacrificed. APAP treatment markedly increased the serum biological markers of liver injury such as alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase. Pretreatment with YCE significantly prevented the increases in the serum levels of these enzymes. Histopathological evaluation of the livers also revealed that YCE prevented APAP-induced centrilobular necrosis. Pretreatment with YCE dose-dependently elevated glutathione levels, but the difference was not significant. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in APAP-induced hepatotoxicity by regulating the antioxidant defense system. Therefore, we investigated the expression of Nrf2 and its target antioxidant enzyme. YCE led to an increased expression of Nrf2 and its target antioxidant enzymes, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (GPx), cystine uptake transporter (xCT), especially hemeoxygenase-1 (HO-1) in mice livers. These results suggest that YCE could induce HO-1 expression via activation of the Nrf2 antioxidant pathway, and protect against APAP-induced hepatotoxicity in mice.