Salicylic acid (SA) and nitric oxide (NO) are reported to alleviate the damaging effects of stress in plants rather similarly when applied at appropriate low concentrations. An experiment was therefore conducted to study the impact of SA, sodium nitroprusside (SNP; as NO donor), and methylene blue (MB; as a guanylate cyclase inhibitor) on wheat seedling performance under osmotic stress. Osmotic stress significantly reduced shoot fresh weight (SFW), chlorophyll contents (Chla, Chlb, total Chl), and membrane stability index (MSI) and also increased malondialdehyde (MDA) level, lipoxygenase (LOX) activity, and hydrogen peroxide production. Moreover, enzymatic antioxidant activities including superoxide dismutase, guaiacol peroxidase, and glutathione reductase activity were enhanced under osmotic stress. On the contrary, SA or SNP pretreatment reduced the damaging effects of osmotic stress by further enhancing the antioxidant activities that led to increased SFW, Chl, and MSI and reduced MDA level and LOX activity. However, pretreatment of plants with MB reversed or reduced the protective effects of SA and SNP suggesting that the protective effects were likely attributed to NO signaling. Therefore, NO may act as downstream of SA signaling in reduction of induced oxidative damage in wheat seedlings.