The mixed species of Staphylococcus aureus and Candida albicans can cause infections on skin, mucosa or bloodstream; however, mechanisms of their cross-kingdom interactions related to pathogenesis and drug resistance are still not clear. Here an increase of S. aureus proliferation and biofilm formation was observed in S. aureus and C. albicans dual-species culture, and the synergistic pathogenic effect was then confirmed in both local (cutaneous abscess) and systemic infection (peritonitis) murine models. According to the transcriptome analysis of the dual-species culture, virulence factors of S. aureus were significantly upregulated. Surprisingly, the beta-lactams and vancomycin-resistant genes in S. aureus as well as azole-resistant genes in C. albicans were also significantly increased. The synergistic effects on drug resistance to both antibacterial and antifungal agents were further proved both in vitro and in cutaneous abscess and peritonitis murine models treated by methicillin, vancomycin and fluconazole. The synergistic interactions between S. aureus and C. albicans on pathogenesis and drug resistance highlight the importance of targeting the microbial interactions in polyspecies-associated infections.