Salinity Prediction Based on Improved LSTM Model in the Qiantang Estuary, China
Rong Zheng,
Zhilin Sun,
Jiange Jiao
et al.
Abstract:Accurate prediction of estuarine salinity can effectively mitigate the adverse effects of saltwater intrusion and help ensure the safety of water resources in estuarine regions. Presently, diverse data-driven models, mainly neural network models, have been employed to predict tidal estuarine salinity and obtained considerable achievements. Due to the nonlinear and nonstationary features of estuarine salinity sequences, this paper proposed a multi-factor salinity prediction model using an enhanced Long Short-Te… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.