Ornamental grasses are commonly used in urban landscapes in Utah and the Intermountain West of the United States. The relative salt tolerance of Eragrostis spectabilis (Pursh) Steud. (purple love grass), Miscanthus sinensis Andersson ‘Gracillimus’ (maiden grass), Panicum virgatum L. ‘Northwind’ (switchgrass), and Schizachyrium scoparium (Michx.) Nash (little bluestem) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m–1 (control), or saline solution at an EC of 5.0 or 10.0 dS·m–1. At harvest (65 days after the initiation of treatment), P. virgatum and S. scoparium exhibited no foliar salt damage, and E. spectabilis and M. sinensis had minimal foliar salt damage when irrigated with saline solution at an EC of 5.0 dS·m–1. At an EC of 10.0 dS·m–1, P. virgatum and S. scoparium still had no foliar salt damage, but E. spectabilis and M. sinensis displayed slight foliar salt damage, with visual scores greater than 3 (0 = dead; 5 = excellent). Compared with the control, saline solution at an EC of 5.0 and 10.0 dS·m–1 reduced the shoot dry weight of all ornamental grasses by 25% and 46%, respectively. The leaf sodium (Na+) concentration of E. spectabilis, M. sinensis, P. virgatum, and S. scoparium irrigated with saline solution at an EC of 10.0 dS·m–1 increased 14.3, 52.6, 5.3, and 1.7 times, respectively, and the chloride (Cl–) concentration increased by 9.4, 11.1, 2.8, and 2.7 times, respectively. As a result of the salt-induced water deficit, plant height, leaf area, number of inflorescences and tillers, net photosynthesis rate (Pn), stomatal conductance (gS), and transpiration rate of four tested ornamental grasses decreased to some extent. Although high Na+ and Cl– accumulated in the leaf tissue, all ornamental grass species still had a good visual quality, with average visual scores greater than 3. In conclusion, all ornamental grasses showed a very strong tolerance to the salinity levels used in this research.