Abstract. Salinomycin is a monocarboxylic polyether antibiotic that has been reported to induce apoptosis in various types of cancer cells with specificity for cancer stem cells. However, its anticancer effect in colorectal cancer stem cells has never been reported. In the present study, we examined the ability of salinomycin to induce cell death in the colorectal cancer stem cell line CD44 + EpCAM + HCT-116, and we measured its in vivo tumor inhibition capacity. Salinomycin dose-dependently induced cytotoxicity in the CD44 + EpCAM + HCT-116 cells and inhibited colony formation. Salinomycin treatment was shown to induce apoptosis, as evidenced by nuclear fragmentation, an increase in the proportion of acridine orange/ethidium bromide-positive cells and an increase in the percentage of Annexin V-positive cells. Apoptosis was induced in colorectal cancer stem cells in a caspase-dependent manner, as shown by an increase in the levels of cleaved caspase-3, -8 and -9. JC-1 staining further revealed that salinomycin induced colorectal cancer cell apoptosis via the mitochondrial pathway. In addition, salinomycin treatment of xenograft mice inhibited the growth of tumors derived from the CD44 + EpCAM + HCT-116 cells. The present study demonstrated that the antibiotic salinomycin exerts an anti-colorectal cancer effect in vitro and in vivo, suggesting salinomycin as a potential drug for colorectal cancer therapy.
IntroductionColorectal cancer (CRC) is the third most common malignancy worldwide, accounting for ~10% of all cancer cases and CRC is one of the most common causes of death related to gastrointestinal cancers (1-3). Although the incidence rates of colon cancer have declined somewhat, current therapies are associated with serious side-effects, high cost and recurrence rates exceeding 50%, primarily due to the development of acquired chemoresistance to conventional chemotherapeutics (4,5).Emerging data suggest that malignant tumors contain a small distinct population of cancer stem cells (CSCs), which are responsible for tumor initiation and propagation (6). Stem cell research and the cancer stem cell (CSC) hypothesis have shown that colonic stem cells or CSCs are involved in tissue regeneration and colonic carcinogenesis (7-9). Drug-resistant CSCs are thought to be one of the key causes of CRC treatment failure, and it is hypothesized that these cells are ultimately the likely cause of metastasis and tumor recurrence (10-12). Most modern treatments are ineffective against solid tumors and this may be the result of the increased resistance of CSCs (13). Therefore, it is vital to find novel therapeutic methods to eradicate CSCs and enable the development of more effective treatment protocols (14).Salinomycin is a 751-Da monocarboxylic polyether antibiotic, which was initially used to eliminate bacteria, fungi and parasites and is fed to ruminants to improve nutrient absorption and feeding efficiency (15,16). This compound is now considered an important anticancer drug candidate (17,18). It has recently been reporte...