Background
Alterations in intercellular and cell-extracellular matrix connections contribute to tumour development. This study investigates the expression of specific cell adhesion molecules (CAMs) in salivary gland tumors (SGTs).
Methods
Formalin–fixed, paraffin– embedded tissue specimens of different types of 34 benign and 31 malignant SGTs and normal salivary glands were studied using Envision/HRP immunohistochemical technique for Desmoglein-2 (Dsg-2), beta4-integrin, CD44s and ICAM-1. Intensity of staining was evaluated in a semi-quantitative manner. Results were analyzed using Kendall’s τ and Spearman’s ρ as correlation criteria.
Results
Dsg-2 in intercellular space, beta4-integrin in cell-basal membrane, and CD44s in both types of contacts were strongly expressed in normal acinar and ductal cells, whereas ICAM-1 was expressed only at the endothelium and sparse stromal cells and monocytes. Strong correlation was found between Dsg-2 expression in adenomas and controls and between adenocarcinomas and controls. In adenomas, a distinct cytoplasmic presence of Dsg-2 was observed in addition to the usual membranous expression, with decreased expression in comparison with normal tissue. In malignant SGTs, Dsg-2 expression was absent. In most SGTs, beta4-integrin was expressed also with a distinct pattern, involving the cytoplasm and the unpolarised membrane, while CD44 was found only on the membrane. Strong correlation between beta4-integrin expression in adenomas and controls was noted, while CD44 expression was found to be correlated significantly between adenocarcinomas and controls (p < 0.001). Regarding ICAM-1, its expression was found increased in adenomas, with non-specific distribution in malignant SGTs and strong correlation between the histological subtypes and controls (p < 0.001).
Conclusion
The different expression profile of CAMs in SGTs could possibly suggest a role on their pathogenesis, representing a model of how neoplastic cells can take advantage of normal tissue architecture and cell-extracellular matrix interactions.