The correlation between carbohydrate availability, pneumococcal biofilm formation, nasopharyngeal colonization, and invasion of the host has been investigated. Of a series of sugars, only sialic acid (i.e., N-acetylneuraminic acid) enhanced pneumococcal biofilm formation in vitro, at concentrations similar to those of free sialic acid in human saliva. In a murine model of pneumococcal carriage, intranasal inoculation of sialic acid significantly increased pneumococcal counts in the nasopharynx and instigated translocation of pneumococci to the lungs. Competition of both sialic acid-dependent phenotypes was found to be successful when evaluated using the neuraminidase inhibitors DANA (i.e., 2,3-didehydro-2-deoxy-N-acetylneuraminic acid), zanamivir, and oseltamivir. The association between levels of free sialic acid on mucosae, pneumococcal colonization, and development of invasive disease shows how a host-derived molecule can influence a colonizing microbe and also highlights a molecular mechanism that explains the epidemiologic correlation between respiratory infections due to neuraminidase-bearing viruses and bacterial pneumonia. The data provide a new paradigm for the role of a host compound in infectious diseases and point to new treatment strategies.