We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.climate | ocean | late Holocene | salt marsh C limate and sea-level reconstructions encompassing the past 2,000 y provide a preanthropogenic context for understanding the nature and causes of current and future changes. Hemispheric and global mean temperature have been reconstructed using instrumental records supplemented with proxy data from natural climate archives (1, 2). This research has improved understanding of natural climate variability and suggests that modern warming is unprecedented in the past two millennia (1). In contrast, understanding of sea-level variability during this period is limited and the response to known climate deviations such as the Medieval Climate Anomaly, Little Ice Age, and 20th century warming is unknown. We reconstruct sea-level change over the past 2100 y using new salt-marsh proxy records and investigate the consistency of reconstructed sea level with global temperature using a semiempirical relationship that connects sea-level changes to mean surface temperature (3, 4). The new sea level proxy data constrain a multicentennial response term in the semiempirical model.
Results and DiscussionSea-Level Data. Salt-marsh sediments and assemblages of foraminifera record former sea level because they are intrinsically linked to the frequency and duration of tidal inundation and keep pace with moderate rates of sea-level rise (5, 6). We developed transfer functions using a modern dataset of foraminifera (193 samples) from 10 salt marshes in North Carolina, USA (7). Transfer functions are empirically derived equations for quantitatively estimating past environmental conditions from paleontological data (8). The transfer functions were applied to foraminiferal assemblages preserved in 1 cm thick samples from two cores of salt-marsh sediment (Sand Point and Tump Point, North Carolina; Fig. 1) to estimate paleomarsh elevation (PME), which is the tidal elevation at which a sample formed with respect to its contemporary sea level (9). Unique vertical errors were calculated by the transfer functions for each PME estimate and were less than 0.1 m. Composite chronologies were developed using Accelerator Mass Spectrometry (AMS) 14 C (conventional, high-precision, and bo...