To ensure prolonged functionality of transpirationdriven electrokinetic power generators (TEPGs) in saltwater environments, it is imperative to mitigate salt accumulation. This study presents a salt pathway transpiration-driven electrokinetic power generator (SPTEPG), incorporating MXene, graphene oxide (GO), and carbon nanotubes (CNTs) as active materials, along with cellulose nanofibers (CNF) and poly(vinyl alcohol) (PVA) as aqueous binders and nonwoven fabrics. This unique combination confers exceptional hydrophilicity and enhances the energy generation performance. When tested with deionized water, the SPTEPG achieved a maximum voltage of 0.6 V and a current of 4.2 μA. In simulated seawater conditions, the presence of conductive ions in the solution boosted these values to 0.64 V and 42 μA. The incorporation of the salt pathway mechanism facilitates the return of excess salt deposits to the bulk solution, thus extending the SPTEPG's service life in saltwater environments. This research offers a straightforward yet effective strategy for designing transpiration-driven power generators suitable for saline water applications.