Rapid screening techniques for selecting salt-tolerant plants are heretofore untried, untested, or unproven. Theoretically, we know it is possible to screen plants for this trait. Halophytes and salt-tolerant ecotypes exist in nature and variability in tolerance has been demonstrated in a number of agronomic species (48). However, the complexities of salt tolerance and the multitude of ways in which plants adjust and adapt to it have caused much confusion. The effect of salinity on a plant may depend on ontogeny (3, 11), humidity (21, 22, 34), temperature (21, 35), light (14, 35), irrigation management (8, 9), cultural practices (6, 11), soil fertility (10, 32), air pollution (20, 26), and the particular growth or yield parameter measured (3, 49). If all environmental conditions are optimal it is possible to grow some agricultural crops at seawater salinity concentrations. Barley, wheat, millet, and various other crops have been grown on sandy beach areas using seawater for irrigation (4, 5, 16, 24). The use of sand facilitates leaching and minimizes salinity accumulation. Additionally, coastal areas may be cool and humid, and, if fogs are common, have low light intensities. These factors create a favorable environment and decrease salinity damage. Recently, Epstein and colleagues used such an environment to screen a barley composite for salt tolerance (16). Several lines were selected which seemed to produce higher yields than the test cultivars. It is possible that such research will result in the selection of traits that will enhance salt tolerance in barley cultivars adapted to other environments.