Camelina sativa is an important renewable oilseed crop for biofuel and feedstock that can relieve the reliance on petroleum-derived oils and reduce greenhouse gases and waste solids resulting from petroleum-derived oils consumption. C. sativa has recently seen revived attention due to its high oil content, high omega-3 unsaturated fatty acids, short life cycle, broader regional adaptation, and low-input agronomic requirements. However, abiotic stress such as salinity stress has imposed threatens on plant photosynthesis and growth by reducing water availability or osmotic stress, ion (Na+ and Cl−) toxicity, nutritional disorders and oxidative stress yield. There still remains much to know for the molecular mechanisms underlying these effects. In this study, a preliminary study applying 10 C. sativa cultivars to be treated under a gradient NaCl concentrations ranging from 0–250 mM and found that 100 mM was the optimal NaCl concentration to effectively differentiate phenotypic performance among different genotypes. Then, a spring panel consisting of 211 C. sativa accessions were germinated under 100 mM NaCl concentration. Six seedling germination traits, including germination rate at two stages (5-day and 9-day seedling stages), germination index, dry and fresh weight, and dry/fresh ratio, were measured. Significant correlations were found between the germination rate at two stages as well as plant biomass traits. Combining the phenotypic data and previously obtained genotypic data, a total of 17 significant trait-associated single nucleotide polymorphisms (SNPs) for the germination rate at the two stages and dry weight were identified from genome-wide association analysis (GWAS). These SNPs are located on putative candidate genes controlling plant root development by synergistically mediating phosphate metabolism, signal transduction and cell membrane activities. These identified SNPs could provide a foundation for future molecular breeding efforts aimed at improved salt tolerance in C. sativa.