A number of miRNAs have been found to be abnormally expressed or mutated in numerous cancers and thus, are considered to act as oncogenes or tumor suppressor genes. The aim of the present study was to investigate the effect of miR-181 on cisplatin-resistant non-small cell lung cancer (NSCLC). In patients with cisplatin-resistant NSCLC, miR-181 expression was found to be markedly decreased. In addition, in the cisplatin-resistant human lung adenocarcinoma cell line A549/DDP, miR-181 downregulation promoted cell growth and metastasis and inhibited cell apoptosis, whereas miR-181 overexpression exerted the opposite effects. Furthermore, miR-181 downregulation suppressed LC3 and ATG5 protein expression in A549/DDP cells through suppression of the PTEN/PI3K/AKT/mTOR pathway, whereas miR-181 overexpression recovered LC3 and ATG5 protein expression by promoting PTEN/PI3K/AKT/mTOR signaling. In turn, PTEN inhibitors reduced the anticancer effects of miR-181 overexpression on A549/DDP cell growth via the regulation of autophagy through the PI3K/AKT/mTOR pathway. Therefore, miR-181 may be a novel and important regulator of cisplatin-resistant NSCLC by serving a role in the regulation of apoptosis, as an established rate-limiting miRNA target.